Belle II silicon vertex detector (SVD)

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Belle II experiment at the SuperKEKB collider in Japan will operate at an unprecedented luminosity of 8× 1035 cm-2 s-1, about 40 times larger than its predecessor, Belle. Its vertex detector is composed of a two-layer DEPFET pixel detector (PXD) and a four layer double-sided silicon microstrip detector (SVD). To achieve a precise decay-vertex position determination and excellent low-momentum tracking under a harsh background condition and high trigger rate of 10 kHz, the SVD employs several innovative techniques. In order to minimize the parasitic capacitance in the signal path, 1748 APV25 ASIC chips, which read out signal from 224 k strip channels, are directly mounted on the modules with the novel Origami concept. The analog signal from APV25 are digitized by a flash ADC system, and sent to the central DAQ as well as to online tracking system based on SVD hits to provide region of interests to the PXD for reducing the latter’s data size to achieve the required bandwidth and data storage space. Furthermore, the state-of-the-art dual phase CO2 cooling solution has been chosen for a combined thermal management of the PXD and SVD system. In this proceedings, we present key design principles, module construction and integration status of the Belle II SVD.

Cite

CITATION STYLE

APA

Bahinipati, S., Adamczyk, K., Aihara, H., Angelini, C., Aziz, T., Babu, V., … Zani, L. (2018). Belle II silicon vertex detector (SVD). In Springer Proceedings in Physics (Vol. 213, pp. 414–420). Springer Science and Business Media, LLC. https://doi.org/10.1007/978-981-13-1316-5_78

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free