SUMMARY We introduce a new approach for locating earthquakes using arrival times derived from waveforms. The most costly computational step of the algorithm scales as the number of stations in the active seismographic network. In this approach, a variation on existing grid search methods, a series of full waveform simulations are conducted for all receiver locations, with sources positioned successively at each station. The traveltime field over the region of interest is calculated by applying a phase picking algorithm to the numerical wavefields produced from each simulation. An event is located by subtracting the stored traveltime field from the arrival time at each station. This provides a shifted and time-reversed traveltime field for each station. The shifted and time-reversed fields all approach the origin time of the event at the source location. The mean or median value at the source location thus approximates the event origin time. Measures of dispersion about this mean or median time at each grid point, such as the sample standard error and the average deviation, are minimized at the correct source position. Uncertainty in the event position is provided by the contours of standard error defined over the grid. An application of this technique to a synthetic data set indicates that the approach provides stable locations even when the traveltimes are contaminated by additive random noise containing a significant number of outliers and velocity model errors. It is found that the waveform-based method out-performs one based upon the eikonal equation for a velocity model with rapid spatial variations in properties due to layering. A comparison with conventional location algorithms in both a laboratory and field setting demonstrates that the technique performs at least as well as existing techniques.
CITATION STYLE
Vasco, D. W., Nakagawa, S., Petrov, P., & Newman, G. (2019). Rapid estimation of earthquake locations using waveform traveltimes. Geophysical Journal International, 217(3), 1727–1741. https://doi.org/10.1093/gji/ggz114
Mendeley helps you to discover research relevant for your work.