◆ Objective: When glucose is present in a medical fluid, the heat applied during sterilization leads to degradation. The glucose degradation products (GDPs) give rise to bioincompatible reactions in peritoneal dialysis patients. The extent of the degradation depends on a number of factors, such as heating time, temperature, pH, glucose concentration, and catalyzing substances. In the present work, we investigated the influence of pH and concentration in order to determine how to decrease the amounts of GDPs produced. ◆ Design: Glucose solutions (1% - 60% glucose; pH 1 - 8) were heat sterilized at 121°C. Ultraviolet (UV) absorption, aldehydes, pH, and inhibition of cell growth (ICG) were used as measures of degradation. Results: Glucose degradation was minimum at an initial pH (prior to sterilization) of around 3.5 and at a high concentration of glucose. There was considerable development of acid degradation products during the sterilization process when the initial pH was high. Two different patterns of development of UV-absorbing degradation products were seen: one below pH 3.5, dominated by the formation of 5-hydroxy-methyl-2-furaldehyde (5-HMF); and one above, dominated by degradation products absorbing at 228 nm. 3-Deoxyglucosone (3-DG) concentration and the portion of 228 nm UV absorbance not caused by 5-HMF were found to relate to the in vitro bioincompatibility measured as ICG; there was no relation between 5-HMF or absorbance at 284 nm and bioincompatibility. ◆ Conclusion: In order to minimize the development of bioincompatible GDPs in peritoneal dialysis fluids during heat sterilization, pH should be kept around 3.2 and the concentration of glucose should be high. 5-HMF and 284 nm UV absorbance are not reliable as quality measures. 3-DG and the portion of UV absorbance at 228 nm caused by degradation products other than 5-HMF seem to be reliable indicators of bioincompatibility.
CITATION STYLE
Kjellstrand, P., Martinson, E., Wieslander, A., Kjellstrand, K., Jeppsson, E., Svensson, E., … Olsson, L. F. (2001). Degradation in peritoneal dialysis fluids may be avoided by using low pH and high glucose concentration. Peritoneal Dialysis International. Multimed Inc. https://doi.org/10.1177/089686080102100402
Mendeley helps you to discover research relevant for your work.