Dynamics of intracellular clusters of nanoparticles

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Nanoparticles play a crucial role in nanodiagnostics, radiation therapy of cancer, and they are now widely used to effectively deliver drugs to specific sites, targeting whole organs and down to single cells, in a controlled manner. Therapeutic efficiency of nanoparticles greatly depends on their clustering distribution inside cells. Our purpose is to find the cluster density using Smoluchowski’s coagulation equation with injections. Results: We obtain an exact cluster density of nanoparticles as the steady-state solution of Smoluchowski’s equation describing clustering due to the fusion of endosomes. We also analyze the unsteady cluster distribution and compare it with the experimental data for time evolution of gold nanoparticle clusters in living cells. Conclusions: We show the steady cluster density is in good agreement with experimental data on gold nanoparticle distribution inside endosomes. We find that for clusters containing between 1 and 20 nanoparticles, the exact cluster density provides a better description of the existing experimental data than the well-known approximate asymptotic power-law distribution x- 3 / 2

Cite

CITATION STYLE

APA

Alexandrov, D. V., Korabel, N., Currell, F., & Fedotov, S. (2022). Dynamics of intracellular clusters of nanoparticles. Cancer Nanotechnology, 13(1). https://doi.org/10.1186/s12645-022-00118-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free