An integrated approach to learning Bayesian networks of rules

N/ACitations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Inductive Logic Programming (ILP) is a popular approach for learning rules for classification tasks. An important question is how to combine the individual rules to obtain a useful classifier. In some instances, converting each learned rule into a binary feature for a Bayes net learner improves the accuracy compared to the standard decision list approach [3,4,14]. This results in a two-step process, where rules are generated in the first phase, and the classifier is learned in the second phase. We propose an algorithm that interleaves the two steps, by incrementally building a Bayes net during rule learning. Each candidate rule is introduced into the network, and scored by whether it improves the performance of the classifier. We call the algorithm SAYU for Score As You Use. We evaluate two structure learning algorithms Naïve Bayes and Tree Augmented Naïve Bayes. We test SAYU on four different datasets and see a significant improvement in two out of the four applications. Furthermore, the theories that SAYU learns tend to consist of far fewer rules than the theories in the two-step approach. © Springer-Verlag Berlin Heidelberg 2005.

Cite

CITATION STYLE

APA

Davis, J., Burnside, E., De Castro Dutra, I., Page, D., & Santos Costa, V. (2005). An integrated approach to learning Bayesian networks of rules. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 3720 LNAI, pp. 84–95). https://doi.org/10.1007/11564096_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free