The development of a highly sensitive and quantitative SARS-CoV-2 rapid antigen test applying newly developed monoclonal antibodies to an automated chemiluminescent flow-through membrane immunoassay device

0Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Rapid and accurate diagnosis of individuals with SARS-CoV-2 infection is an effective way to prevent and control the spread of COVID-19. Although the detection of SARS‐CoV‐2 viral RNA by RT‐qPCR is the gold standard for COVID-19 testing, the use of antigen-detecting rapid diagnostic tests (Ag-RDTs) is emerging as a complementary surveillance tool as Omicron case numbers skyrocket worldwide. However, the results from Ag-RDTs are less accurate in individuals with low viral loads. Results: To develop a highly sensitive and accurate Ag-RDT, 90 monoclonal antibodies were raised from guinea pigs immunized with SARS CoV-2 nucleocapsid protein (CoV-2-NP). By applying a capture antibody recognizing the structural epitope of the N-terminal domain of CoV-2-NP and a detection antibody recognizing the C-terminal tail of CoV-2-NP to an automated chemiluminescence flow-through membrane immunoassay device, we developed a novel Ag-RDT, CoV-2-POCube. The CoV-2-POCube exclusively recognizes CoV-2-NP variants but not the nucleocapsid proteins of other human coronaviruses. The CoV-2-POCube achieved a limit of detection sensitivity of 0.20 ~ 0.66 pg/mL of CoV-2-NPs, demonstrating more than 100 times greater sensitivity than commercially available SARS-CoV-2 Ag-RDTs. Conclusions: CoV-2-POCube has high analytical sensitivity and can detect SARS-CoV-2 variants in 15 min without observing the high-dose hook effect, thus meeting the need for early SARS-CoV-2 diagnosis with lower viral load. CoV-2-POCube is a promising alternative to currently available diagnostic devices for faster clinical decision making in individuals with suspected COVID-19 in resource-limited settings.

Cite

CITATION STYLE

APA

Nishimura, K., Kitazawa, H., Kawahata, T., Yuhara, K., Masuya, T., Kuroita, T., … Kurosawa, N. (2023). The development of a highly sensitive and quantitative SARS-CoV-2 rapid antigen test applying newly developed monoclonal antibodies to an automated chemiluminescent flow-through membrane immunoassay device. BMC Immunology, 24(1). https://doi.org/10.1186/s12865-023-00567-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free