Temperature modulation reveals three distinct stages of Wallerian degeneration

61Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

After peripheral nerve transection, axons distal to the cut site rapidly degenerate, a process termed Wallerian degeneration. In wild-type mice the compound action potential (CAP) disappears by 3 d. Previous studies have demonstrated that cold temperatures and lower extracellular calcium ion (Ca2+) concentrations can slow the rate of Wallerian degeneration. We have incubated isolated sciatic nerve segments from wild-type and C57BL/Wld mice (which carry a gene slowing Wallerian degeneration) in vitro at 25 and 37°C. At 25°C we found that the degeneration rate of wild-type axons was slowed dramatically, with the CAP preserved up to 7 d post-transection. In contrast, at 37°C the CAPs were minimal at 2 d. When the temperature of wild-type nerves was raised to 37°C after 24-72 hr at 25°C, degeneration occurred within the subsequent 24 hr. Wld nerves, too, were preserved longer at 25°C but, on return to 37°C, degenerated promptly. Cooling the nerve within 12 hr after axotomy enhanced axonal preservation. Neither wild-type nor Wld nerves showed different degeneration rates when they were incubated with 250 μM or 5 or 10 mM extracellular Ca2+ for 1-2 d, suggesting that an abrupt increase in intracellular Ca2+ occurs at the time of axonal destruction. Wallerian degeneration, thus, appears to progress through three distinct stages. Initiation occurs at the time of injury with subsequent temperature-dependent and -independent phases. Nerves appear to remain intact and are able to exclude Ca2+ from entering until an as yet unknown process finally increases axolemmal permeability.

Cite

CITATION STYLE

APA

Tsao, J. W., George, E. B., & Griffin, J. W. (1999). Temperature modulation reveals three distinct stages of Wallerian degeneration. Journal of Neuroscience, 19(12), 4718–4726. https://doi.org/10.1523/jneurosci.19-12-04718.1999

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free