A machine learning approach for agricultural parcel delineation through agglomerative segmentation

84Citations
Citations of this article
126Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A correct delineation of agricultural parcels is a primary requirement for any parcel-based application such as the estimate of agricultural subsidies. Currently, high-resolution remote-sensing images provide useful spatial information to delineate parcels; however, their manual processing is highly time consuming. Thus, it is necessary to create methods which allow performing this task automatically. In this work, the use of a machine-learning algorithm to delineate agricultural parcels is explored through a novel methodology. The proposed methodology combines superpixels and supervised classification in order to determine which adjacent superpixels should be merged, transforming the segmentation issue into a machine learning matter. A visual evaluation of results obtained by the methodology applied to two areas of a high-resolution satellite image of fragmented agricultural landscape points out that the use of machine-learning algorithm for this task is promising.

Cite

CITATION STYLE

APA

García-Pedrero, A., Gonzalo-Martín, C., & Lillo-Saavedra, M. (2017). A machine learning approach for agricultural parcel delineation through agglomerative segmentation. International Journal of Remote Sensing, 38(7), 1809–1819. https://doi.org/10.1080/01431161.2016.1278312

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free