Mapping haplotype-haplotype interactions with adaptive LASSO.

16Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

BACKGROUND: The genetic etiology of complex diseases in human has been commonly viewed as a complex process involving both genetic and environmental factors functioning in a complicated manner. Quite often the interactions among genetic variants play major roles in determining the susceptibility of an individual to a particular disease. Statistical methods for modeling interactions underlying complex diseases between single genetic variants (e.g. single nucleotide polymorphisms or SNPs) have been extensively studied. Recently, haplotype-based analysis has gained its popularity among genetic association studies. When multiple sequence or haplotype interactions are involved in determining an individual's susceptibility to a disease, it presents daunting challenges in statistical modeling and testing of the interaction effects, largely due to the complicated higher order epistatic complexity. RESULTS: In this article, we propose a new strategy in modeling haplotype-haplotype interactions under the penalized logistic regression framework with adaptive L1-penalty. We consider interactions of sequence variants between haplotype blocks. The adaptive L1-penalty allows simultaneous effect estimation and variable selection in a single model. We propose a new parameter estimation method which estimates and selects parameters by the modified Gauss-Seidel method nested within the EM algorithm. Simulation studies show that it has low false positive rate and reasonable power in detecting haplotype interactions. The method is applied to test haplotype interactions involved in mother and offspring genome in a small for gestational age (SGA) neonates data set, and significant interactions between different genomes are detected. CONCLUSIONS: As demonstrated by the simulation studies and real data analysis, the approach developed provides an efficient tool for the modeling and testing of haplotype interactions. The implementation of the method in R codes can be freely downloaded from http://www.stt.msu.edu/~cui/software.html.

Cite

CITATION STYLE

APA

Li, M., Romero, R., Fu, W. J., & Cui, Y. (2010). Mapping haplotype-haplotype interactions with adaptive LASSO. BMC Genetics, 11, 79. https://doi.org/10.1186/1471-2156-11-79

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free