Visual cortical lesions destroy the target cells for geniculocortical fibers from a certain retinotopic region. This leads to a cortical scotoma. We have investigated the receptive fields of cells in the visual cortex before, 2 days and 2 months after focal ibotenic acid lesions in the adult cat visual cortex and have found signs of receptive field plasticity in the surroundings of the chronic but not the acute and subacute excitotoxic lesions. In the subacute state (first two days post lesion) receptive field sizes of cells at the border of the lesion were reduced in size or remained unchanged. Remapping of cortical receptive fields 2 months later revealed a number of cells with multifold enlarged receptive fields at the border of the lesion. The cells with enlarged receptive fields displayed orientation and direction selectivity like normal cells. The size increase appeared not specifically directed towards the scotoma; however, the enlarged receptive fields can reduce the extent of a cortical scotoma, since previously unresponsive regions of the visual field activate cortical cells at the border of the lesion. This late receptive field plasticity could serve as a mechanism for the filling-in of cortical scotomata observed in patients with visual cortex lesions.
CITATION STYLE
Eysel, U. T., & Schweigart, G. (1999). Increased receptive field size in the surround of chronic lesions in the adult cat visual cortex. Cerebral Cortex, 9(2), 101–109. https://doi.org/10.1093/cercor/9.2.101
Mendeley helps you to discover research relevant for your work.