Cell-Mediated Immunity Induced by Recombinant Mycobacterium bovis Bacille Calmette-Guérin Strains Against an Intracellular Bacterial Pathogen: Importance of Antigen Secretion or Membrane-Targeted Antigen Display as Lipoprotein for Vaccine Efficacy

  • Grode L
  • Kursar M
  • Fensterle J
  • et al.
42Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Live recombinant vaccines expressing defined pathogen-derived Ags represent powerful candidates for future vaccination strategies. In this study, we report on the differential induction of protective cell-mediated immunity elicited by different recombinant Mycobacterium bovis Bacille Calmette-Guérin (BCG) strains displaying p60 Ag of Listeria monocytogenes in secreted, cytosolic, or membrane-attached form for T cell recognition. Anti-listerial protection evoked by the membrane-linked p60 lipoprotein of rBCG Mp60 and that of the p60 derivative secreted by rBCG Sp60-40 were nearly equal, whereas cytosolic p60 displayed by rBCG Np60 failed to protect mice from listeriosis. In vivo depletion of CD4 or CD8 T cell subpopulations in rBCG Mp60-vaccinated mice before listerial challenge revealed interactions of both T cell subsets in anti-listerial protection. In rBCG Sp60-40-vaccinated animals, CD4 T cells predominantly contributed to anti-listerial control as shown by the failure of anti-CD8 mAb treatment to impair the outcome of listeriosis in rBCG Sp60-40-vaccinated mice after L. monocytogenes challenge. Hence, differential Ag display by rBCG influences cell-mediated immunity, which in turn may impact vaccine efficacy due to the different requirements of CD4 or CD8 T cells for pathogen elimination.

Cite

CITATION STYLE

APA

Grode, L., Kursar, M., Fensterle, J., Kaufmann, S. H. E., & Hess, J. (2002). Cell-Mediated Immunity Induced by Recombinant Mycobacterium bovis Bacille Calmette-Guérin Strains Against an Intracellular Bacterial Pathogen: Importance of Antigen Secretion or Membrane-Targeted Antigen Display as Lipoprotein for Vaccine Efficacy. The Journal of Immunology, 168(4), 1869–1876. https://doi.org/10.4049/jimmunol.168.4.1869

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free