Online Incremental Learning for High Bandwidth Network Traffic Classification

  • Loo H
  • Joseph S
  • Marsono M
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Data stream mining techniques are able to classify evolving data streams such as network traffic in the presence of concept drift. In order to classify high bandwidth network traffic in real-time, data stream mining classifiers need to be implemented on reconfigurable high throughput platform, such as Field Programmable Gate Array (FPGA). This paper proposes an algorithm for online network traffic classification based on the concept of incremental k -means clustering to continuously learn from both labeled and unlabeled flow instances. Two distance measures for incremental k -means (Euclidean and Manhattan) distance are analyzed to measure their impact on the network traffic classification in the presence of concept drift. The experimental results on real datasets show that the proposed algorithm exhibits consistency, up to 94% average accuracy for both distance measures, even in the presence of concept drifts. The proposed incremental k -means classification using Manhattan distance can classify network traffic 3 times faster than Euclidean distance at 671 thousands flow instances per second.

Cite

CITATION STYLE

APA

Loo, H. R., Joseph, S. B., & Marsono, M. N. (2016). Online Incremental Learning for High Bandwidth Network Traffic Classification. Applied Computational Intelligence and Soft Computing, 2016, 1–13. https://doi.org/10.1155/2016/1465810

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free