The non-centrosymmetric crystal structures of polar-semiconductors comprising GaN, InN, AlN, and ZnO intrigued the scientific community in investigating their potential for a strain-induced nano-energy generation. The coupled semiconducting and piezoelectric properties produce a piezo-potential that modulates the charge transport across their heterostructure interfaces. By using conductive-atomic force microscopy, we investigate the mechanism that gives rise to the piezotronic effect in AlGaN nanowires (NWs) grown on a molybdenum (Mo) substrate. By applying external bias and force on the NWs/Mo structure using a Pt-Ir probe, the charge transport across the two adjoining Schottky junctions is modulated due to the change in the apparent Schottky barrier heights (SBHs) that result from the strain-induced piezo-potential. We measured an increase in the SBH of 98.12 meV with respect to the background force, which corresponds to an SBH variation ?φ?F of 6.24 meV/nN for the semiconductor/Ti/Mo interface. The SBH modulation, which is responsible for the piezotronic effect, is further studied by measuring the temperature-dependent I-V curves from room temperature to 398 K. The insights gained from the unique structure of AlGaN NWs/Mo shed light on the electronic properties of the metal-semiconductor interfaces, as well as on the potential application of AlGaN NW piezoelectric nanomaterials in optoelectronics, sensors, and energy generation applications.
CITATION STYLE
Al-Maghrabi, L., Huang, C., Priante, D., Tian, M., Min, J. W., Zhao, C., … Ooi, B. S. (2020). Piezotronic AlGaN nanowire Schottky junctions grown on a metal substrate. AIP Advances, 10(5). https://doi.org/10.1063/5.0008112
Mendeley helps you to discover research relevant for your work.