Objective: The timing of defibrillation is mostly at arbitrary intervals during cardio-pulmonary resuscitation (CPR), rather than during intervals when the out-of-hospital cardiac arrest (OOH-CA) patient is physiologically primed for successful countershock. Interruptions to CPR may negatively impact defibrillation success. Multiple defibrillations can be associated with decreased post-resuscitation myocardial function. We hypothesize that a more complete picture of the cardiovascular system can be gained through non-linear dynamics and integration of multiple physiologic measures from biomedical signals. Materials and Methods: Retrospective analysis of 153 anonymized OOH-CA patients who received at least one defibrillation for ventricular fibrillation (VF) was undertaken. A machine learning model, termed Multiple Domain Integrative (MDI) model, was developed to predict defibrillation success. We explore the rationale for non-linear dynamics and statistically validate heuristics involved in feature extraction for model development. Performance of MDI is then compared to the amplitude spectrum area (AMSA) technique. Results: 358 defibrillations were evaluated (218 unsuccessful and 140 successful). Non-linear properties (Lyapunov exponent > 0) of the ECG signals indicate a chaotic nature and validate the use of novel non-linear dynamic methods for feature extraction. Classification using MDI yielded ROC-AUC of 83.2%and accuracy of 78.8%, for the model built with ECG data only. Utilizing 10-fold cross-validation, at 80% specificity level, MDI (74% sensitivity) outperformed AMSA (53.6% sensitivity). At 90% specificity level, MDI had 68.4% sensitivity while AMSA had 43.3%sensitivity. Integrating available end-tidal carbon dioxide features into MDI, for the available 48 defibrillations, boosted ROC-AUC to 93.8% and accuracy to 83.3% at 80% sensitivity. Conclusion: At clinically relevant sensitivity thresholds, the MDI provides improved performance as compared to AMSA, yielding fewer unsuccessful defibrillations. Addition of partial end-tidal carbon dioxide (PetCO2) signal improves accuracy and sensitivity of the MDI prediction model.
CITATION STYLE
Shandilya, S., Kurz, M. C., Ward, K. R., & Najarian, K. (2016). Integration of attributes from non-linear characterization of cardiovascular time-series for prediction of defibrillation outcomes. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0141313
Mendeley helps you to discover research relevant for your work.