A priori solar radiation pressure model for BeiDou-3 MEO satellites

31Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Due to the cuboid satellite body of BeiDou-3 satellites, the accuracy of their orbit showed a trend of systematic variation with the sun-satellite-earth angle (ε) using the Extend CODE Orbit Model (ECOM1). Therefore, an a priori cuboid box-wing model (named the cuboid model) is necessary to compensate ECOM1. Considering that the body-dimensions and optical properties of the BeiDou-3 satellites used to construct the box-wing model have not yet been fully released, the adjustable box-wing model (ABW) was used for precise orbit determination (POD). The a priori cuboid box-wing model was directly estimated by the precision radiation accelerations, obtained from ABW POD. When using ECOM1 model, for 14 < β < 40°, a linear systematic variation of D0 related to the elevation of the sun above the orbital plane (β-angle) with a slope of 0.048 nm/s2/°, was found for C30. After adding the cuboid model to assist ECOM1 (named Cuboid + ECOM1), the slope was reduced to 0.005 nm/s2/°, and for C20 satellite, the standard deviation (STD) of D0 was improved, from 1.28 to 0.85 nm/s2 (34%). For satellite laser ranging (SLR) validation, when using the ECOM1 model, the systematic variation with the ε angle was about 14 cm for C20 and C30. After using the Cuboid + ECOM1 model, the variation was significantly reduced to about 5 cm. For C20 and C21, compared with the ECOM1 model, the root mean square (RMS) of the ECOM2 and Cuboid + ECOM1 model was improved by about 0.54 (10.3%) and 0.43 cm (8.7%). For C29 and C30, the RMS of ECOM2 and Cuboid + ECOM1 model was improved for about 0.7 (10.9%) and 1.6 cm (25.6%). Finally, the RMS of the SLR residuals of 4.37 to 4.88 cm was achieved for BeiDou-3 POD.

Cite

CITATION STYLE

APA

Yan, X., Liu, C., Huang, G., Zhang, Q., Wang, L., Qin, Z., & Xie, S. (2019). A priori solar radiation pressure model for BeiDou-3 MEO satellites. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131605

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free