Amino acid substitution patterns between the nonbarophilic Pyrococcus furiosus and its barophilic relative P. abyssi confirm that hydrostatic pressure asymmetry indices reflect the extent to which amino acids are preferred by barophilic archaeal organisms. Substitution patterns in entire protein sequences, shared protein domains defined at fold superfamily level, domains in homologous sequence pairs, and domains of very ancient and very recent origin now provide further clues about the environment that led to the genetic code and diversified life. The pyrococcal proteomes are very similar and share a very early ancestor. Relative amino acid abundance analyses showed that biases in the use of amino acids are due to their shared fold superfamilies. Within these repertoires, only two of the five amino acids that are preferentially barophilic, aspartic acid and arginine, displayed this preference significantly and consistently across structure and in domains appearing in the ancestor. The more primordial asparagine, lysine and threonine displayed a consistent preference for nonbarophily across structure and in the ancestor. Since barophilic preferences are already evident in ancient domains that are at least 3 billion year old, we conclude that barophily is a very ancient trait that unfolded concurrently with genetic idiosyncrasies in convergence towards a universal code. © 2013 Liudmila S. Yafremava et al.
CITATION STYLE
Yafremava, L. S., Di Giulio, M., & Caetano-Anollés, G. (2013). Comparative analysis of barophily-related amino acid content in protein domains of pyrococcus abyssi and pyrococcus furiosus. Archaea, 2013. https://doi.org/10.1155/2013/680436
Mendeley helps you to discover research relevant for your work.