PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features

243Citations
Citations of this article
216Readers
Mendeley users who have this article in their library.

Abstract

To address the problem of estimating camera trajectory and to build a structural three-dimensional (3D) map based on inertial measurements and visual observations, this paper proposes point–line visual–inertial odometry (PL-VIO), a tightly-coupled monocular visual–inertial odometry system exploiting both point and line features. Compared with point features, lines provide significantly more geometrical structure information on the environment. To obtain both computation simplicity and representational compactness of a 3D spatial line, Plücker coordinates and orthonormal representation for the line are employed. To tightly and efficiently fuse the information from inertial measurement units (IMUs) and visual sensors, we optimize the states by minimizing a cost function which combines the pre-integrated IMU error term together with the point and line re-projection error terms in a sliding window optimization framework. The experiments evaluated on public datasets demonstrate that the PL-VIO method that combines point and line features outperforms several state-of-the-art VIO systems which use point features only.

Cite

CITATION STYLE

APA

He, Y., Zhao, J., Guo, Y., He, W., & Yuan, K. (2018). PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features. Sensors (Switzerland), 18(4). https://doi.org/10.3390/s18041159

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free