Shallow free gas is investigated in seismoacoustic data in 10 frequency bands covering a frequency range between 0.2 and 43 kHz. At the edge of a gassy patch in the Bornholm Basin (Baltic Sea), compressional wave attenuation caused by free gas is estimated from reflection amplitudes beneath the gassy sediment layer. Imaging of shallow free gas is considerably influenced by gas bubble resonance, because in the resonance frequency range attenuation is significantly increased. At the resonance frequency of the largest bubbles between 3 and 5 kHz, high scattering causes complete acoustic blanking beneath the top of the gassy sediment layer. In the wider resonance frequency range between 3 and 15 kHz, the effect of smaller bubbles becomes dominant and the attenuation slightly decreases. This allows acoustic waves to be transmitted and reflections can be observed beneath the gassy sediment layer for higher frequencies. Above resonance beginning at ∼19 kHz, attenuation is low and the presence of free gas can be inferred from the decreased reflection amplitudes beneath the gassy layer. Below the resonance frequency range (<1 kHz), attenuation is generally very low and not dependent on frequency. Using the geoacoustic model of Anderson and Hampton, the observed frequency boundaries suggest gas bubble sizes between 1 and 4-6 mm, and gas volume fractions up to 0.02% in a ∼2 m thick sediment layer, whose upper boundary is the gas front. With the multifrequency acoustic approach and the Anderson and Hampton model, quantification of free gas in shallow marine environments is possible if the measurement frequency range allows the identification of the resonance frequency peak. The method presented is limited to places with only moderate attenuation, where the amplitudes of a reflection can be analyzed beneath the gassy sediment layer.
CITATION STYLE
Tõth, Z., Spiess, V., & Keil, H. (2015). Frequency dependence in seismoacoustic imaging of shallow free gas due to gas bubble resonance. Journal of Geophysical Research: Solid Earth, 120(12), 8056–8072. https://doi.org/10.1002/2015JB012523
Mendeley helps you to discover research relevant for your work.