Diurnal Variation in the Functioning of Cowpea Nodules

  • Rainbird R
  • Atkins C
  • Pate J
N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nitrogenase (EC 1.7.99.2) activity of nodules of cowpea (Vigna unguiculata [L.] Walp), maintained under conditions of a 12-hour day at 30 degrees C and 800 to 1,000 microeinsteins per square meter per second (photosynthetically active radiation) and a 12-hour night at 20 degrees C, showed a marked diurnal variation with the total electron flux through the enzyme at night being 60% of that in the photoperiod. This diurnal pattern was, however, due to changes in hydrogen evolution. The rate of nitrogen fixation, measured by short-term (15)N(2) assimilation or estimated from the difference in hydrogen evolution in air or Ar:O(2) (80:20; v/v), showed no diurnal variation. Carbon dioxide released from nodules showed a diurnal variation synchronized with that of nitrogenase functioning and, as a consequence, the apparent ;respiratory cost' of nitrogen fixation in the photoperiod was almost double that at night (9.74 +/- 0.38 versus 5.70 +/- 0.90 moles CO(2) evolved per mole N(2) fixed). Separate carbon and nitrogen balances constructed for nodules during the photoperiod and dark period showed that, at night, nodule functioning required up to 40% less carbohydrate to achieve the same level of nitrogen fixation as during the photoperiod (2.4 versus 1.4 moles hexose per mole N(2) fixed).Stored reserves of nonstructural carbohydrate of the nodule only partly satisfied the requirement for carbon at night, and fixation was dependent on continued import of translocated assimilates at all times. Measurements of the soluble nitrogen pools of the nodule together with (15)N studies indicated that, both during the day and night, nitrogenous products of fixation were effectively translocated to all organs of the host plant despite low rates of transpiration at night. Reduced fluxes of water through the plant at night were apparently counteracted by increased concentration of nitrogen, especially as ureides, in the xylem stream.

Cite

CITATION STYLE

APA

Rainbird, R. M., Atkins, C. A., & Pate, J. S. (1983). Diurnal Variation in the Functioning of Cowpea Nodules. Plant Physiology, 72(2), 308–312. https://doi.org/10.1104/pp.72.2.308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free