Background: The multidrug resistance (MDR) of cancer cells is a major obstacle to cancer treatment. Glutathione S-transferase Pi (GSTP1-1) catalyzes the conjugation of glutathione with anticancer drugs and therefore reduces their efficacy. Phenolic compounds have the potential to inhibit GST P1-1 activity, which is a promising goal to overcome MDR and increase the efficacy of chemotherapy. Results: Three fractions (dichloromethane, ethyl acetate, and n-butanol) were prepared from Tamarindus indica seeds to determine their phenolic and flavonoid properties as well as their antioxidant/pro-oxidant properties. The n-butanol fraction displayed the highest levels of phenol (378 ± 11.7 mg gallic acid equivalent/g DW) and flavonoids (83 ± 6.0 mg rutin equivalent/g DW). Inhibiting effects on purified GSTP1-1 activity in human erythrocytes (eGST), placenta (pGST), and hGSTP1-1 have been studied. The n-butanol fraction was the most effective in inhibiting eGST, hGSTP1-1, and pGST with IC50 values of 3.0 ± 0.7, 4.85 ± 0.35, and 6.6 ± 1.2 μg/ml, respectively. Cellular toxicity was investigated for the T. indica n-butanol fraction on various human cancerous cell lines. The only ones affected were MCF-7 cell lines (72%) and HePG2 (52%) indicated cytotoxicity. The value of IC50 is 68.5 μg/ml of T. indica n-butanol fraction was observed compared to 1.7 μg/ml tamoxifen in MCF-7 cell lines. The combination of treatment of T. indica extract with the medicinally approved drug tamoxifen had unexpected effects; complete elimination of the cytotoxic inhibition effect of tamoxifen and the plant extract was observed. Conclusions: However T. indica extract has a cytotoxic effect on the MCF-7 cell line; in certain situations, plant products can have an opposite effect to the intended drug, which decreases the impact of the drug.
CITATION STYLE
Guneidy, R. A., Gad, A. M., Zaki, E. R., Ibrahim, F. M., & Shokeer, A. (2020). Antioxidant or pro-oxidant and glutathione transferase P1-1 inhibiting activities for Tamarindus indica seeds and their cytotoxic effect on MCF-7 cancer cell line. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00077-z
Mendeley helps you to discover research relevant for your work.