A pan-TE map highlights transposable elements underlying domestication and agronomic traits in Asian rice

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

Cite

CITATION STYLE

APA

Li, X., Dai, X., He, H., Lv, Y., Yang, L., He, W., … Shang, L. (2024). A pan-TE map highlights transposable elements underlying domestication and agronomic traits in Asian rice. National Science Review, 11(6). https://doi.org/10.1093/nsr/nwae188

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free