The phosphoinositide 3-kinase/AKT signaling pathway plays a key role in cancer cell growth, survival, and angiogenesis. Phosphoinositide-dependent protein kinase-1 (PDK1) acts at a focal point in this pathway immediately downstream of phosphoinositide 3-kinase and PTEN, where it phosphorylates numerous AGC kinases. The PDK1 kinase domain has at least three ligand-binding sites: the ATP-binding pocket, the peptide substrate-binding site, and a groove in the N-terminal lobe that binds the C-terminal hydrophobic motif of its kinase substrates. Based on the unique PDK1 substrate recognition system, ultrahigh throughput TR-FRET and Alphascreen® screening assays were developed using a biotinylated version of the PDK1-tide substrate containing the activation loop of AKT fused to a pseudo-activated hydrophobic motif peptide. Using full-length PDK1, Km values were determined as 5.6 μM for ATP and 40 nM for the fusion peptide, revealing 50-fold higher affinity compared with the classical AKT(Thr-308)-tide. Kinetic and biophysical studies confirmed the PDK1 catalytic mechanism as a rapid equilibrium random bireactant reaction. Following an ultrahigh throughput screen of a large library, 2,000 compounds were selected from the reconfirmed hits by computational analysis with a focus on novel scaffolds. ATP-competitive hits were deconvoluted by dose-response studies at 1x and 10x Km concentrations of ATP, and specificity of binding was assessed in thermal shift assay. Inhibition studies using fusion PDK1-tide1 substrate versus AKT(Thr-308)-tide and kinase selectivity profiling revealed a novel selective alkaloid scaffold that evidently binds to the PDK1-interacting fragment pocket. Molecular modeling suggests a structural paradigm for the design of inhibitory versus activating allosteric ligands of PDK1. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Bobkova, E. V., Weber, M. J., Xu, Z., Zhang, Y. L., Jung, J., Blume-Jensen, P., … Kariv, I. (2010). Discovery of PDK1 kinase inhibitors with a novel mechanism of action by ultrahigh throughput screening. Journal of Biological Chemistry, 285(24), 18838–18846. https://doi.org/10.1074/jbc.M109.089946
Mendeley helps you to discover research relevant for your work.