The common pattern of play in ‘team sports’ is ‘stop and go’, i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2–4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores.
CITATION STYLE
Williams, C., & Rollo, I. (2015, November 1). Carbohydrate Nutrition and Team Sport Performance. Sports Medicine. Springer International Publishing. https://doi.org/10.1007/s40279-015-0399-3
Mendeley helps you to discover research relevant for your work.