Antimony (Sb)-based materials are considered to be attractive for use in Li secondary battery anodes because of their high capacity. However, their huge volume change during Li insertion-extraction cycling limits their cycle performance. The Sb-active material can be combined with intercalation-based active materials to address these issues. In this study, spherical Sb core/Nb2O5 shell structured composite materials were synthesized through a simple solvothermal process and a carbon coating was simultaneously added during heat treatment using a naphthalene precursor. The resulting double-shelled materials were characterized with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. The electrochemical test results showed that a reversible capacity of more than 450 mAh g−1 was retained after 100 cycles. This improved performance is ascribed to the double-shelled structure. The large volume change of the nano-sized Sb core material was alleviated by the double-shelled structure, which consisted of crystalline orthorhombic Nb2O5 and amorphous carbon. The shell materials also aided rapid charge transport.
CITATION STYLE
Seo, H., Kim, K., & Kim, J. H. (2020). Spherical Sb core/Nb2O5-C double-shell structured composite as an anode material for Li secondary batteries. Energies, 13(8). https://doi.org/10.3390/en13081999
Mendeley helps you to discover research relevant for your work.