Evapotranspiration (ET) involves actual water consumption directly from the land surface; however, regional ET maps are usually neglected during water management and allocation. In this study, an integrated satellite-based ET monitoring approach with two spatial resolutions is proposed over an extremely arid basin in China that has experienced crop area expansion and has been the focus of a water-saving project since 2012. The proposed ETWatch approach combined with an empirical downscaling strategy based on vegetation condition was employed to produce monthly ET maps. This method achieves satisfactory accuracy and is validated by its reasonable spatial and temporal pattern results. Yearly results exhibit an increasing ET trend before 2012, which subsequently gradually decrease. This trend fits well with the dynamics of the basin-wide vegetation condition, indicating that there is a stronger correlation between water consumption and vegetation than between other environmental indicators. The average ET over three main crop types in the region (grape, cotton, and melon) decreased by approximately 5% due to optimizations of the irrigation timeline during the project, while 13% of the water savings can be attributed to the fallowing of crop areas. Based on the irrigation distribution in 2012, a comparison between drip and border irrigation that achieves water savings of 3.6% from grape and 5.8% from cotton is conducted. However, an afforestation project that involved planting young trees led to an approximate 25% increase in water consumption. Overall, since 2012, the water-saving project has achieved satisfactory performance regarding excessive groundwater withdrawal, showing a reduction trend of 3 million m3/year and an increase in Lake Aiding water levels since 2011. The results reveal the potential of the ET monitoring strategy as a basis for basin-scale water management.
CITATION STYLE
Tan, S., Wu, B., Yan, N., & Zeng, H. (2018). Satellite-based water consumption dynamics monitoring in an extremely arid area. Remote Sensing, 10(9). https://doi.org/10.3390/rs10091399
Mendeley helps you to discover research relevant for your work.