The voltage-gated sodium channel is critical for cardiomyocyte function. It consists of a protein complex comprising a pore-forming α subunit and associated β subunits. In polarized Madin–Darby canine kidney cells, we show evidence by acyl-biotin exchange that β2 is S-acylated at Cys-182. Interestingly, we found that palmitoylation increases β2 association with detergent-resistant membranes. β2 localizes exclusively to the apical surface. However, depletion of plasma membrane cholesterol, or blocking intracellular cholesterol transport, caused mislocalization of β2, as well as of the non-palmitoylable C182S mutant, to the basolateral domain. Apical β2 did not undergo endocytosis and displayed limited diffusion within the plane of the membrane; such behavior suggests that, at least in part, it is cytoskeleton anchored. Upon acute cholesterol depletion, its mobility was greatly reduced, and a slight reduction was also measured as a result of lack of palmitoylation, supporting β2 association with cholesterol-rich lipid rafts. Indeed, lipid raft labeling confirmed a partial overlap with apical β2. Although β2 palmitoylation was not required to promote surface localization of the α subunit, our data suggest that it is likely implicated in lipid raft association and the polarized localization of β2.
CITATION STYLE
Cortada, E., Serradesanferm, R., Brugada, R., & Verges, M. (2021). The voltage-gated sodium channel β2 subunit associates with lipid rafts by S-palmitoylation. Journal of Cell Science, 134(6). https://doi.org/10.1242/jcs.252189
Mendeley helps you to discover research relevant for your work.