Mike Preuss: Multimodal optimization by means of evolutionary algorithms

  • Al-Madi N
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.

Cite

CITATION STYLE

APA

Al-Madi, N. (2016). Mike Preuss: Multimodal optimization by means of evolutionary algorithms. Genetic Programming and Evolvable Machines, 17(3), 315–316. https://doi.org/10.1007/s10710-016-9272-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free