Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer

34Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs), highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs), which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA), which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR) and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer.

Cite

CITATION STYLE

APA

Zhang, T., Chen, Y., Li, J., Yang, F., Wu, H., Dai, F., … Yi, Z. (2014). Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer. Neoplasia (United States), 16(8), 665–677. https://doi.org/10.1016/j.neo.2014.07.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free