Polypropylene degradation in vivo appears as mesh surface cracking and peeling. This aging process of the mesh, resulting in the lack of bio-stability, contradicts the requirement of biocompatibility. However, to date, it is still not clearly established how much this mesh degradation influences the local tissue response with subsequent clinical consequences. This study aims to find out whether mesh degradation is correlated with elevated inflammatory tissue reaction through analyzing 100 human PP meshes explanted from the pelvic floor. A degradation classification method, based on standard pathological H&E stained slides of the explanted mesh via light microscope, was developed to classify the mesh degradation into four classes (no, mild, moderate and severe degradation). The peri-filamentary tissue inflammatory reaction was analyzed by scoring the expression of the most common cell markers for the innate immune reaction: CD68 as marker for macrophage, CD86 for M1 subtype, CD163 for M2 subtype, CD3 for T-lymphocyte and CD15 for neutrophil granulocytes. The correlation between immune cell expression, degradation classification and time of implantation of the meshes are evaluated with Spearman-Rho-Test. Mesh degradation worsens significantly (p
CITATION STYLE
Wang, H., Klosterhalfen, B., Klinge, U., Müllen, A., & Jockenhoevel, S. (2023). Influence of polypropylene mesh degradation on tissue inflammatory reaction. Journal of Biomedical Materials Research - Part A, 111(8), 1110–1119. https://doi.org/10.1002/jbm.a.37494
Mendeley helps you to discover research relevant for your work.