Cutaneous wound healing is delayed in patients with diabetes. Caffeic acid phenethyl ester (CAPE) has been identified as an effective constituent of propolis with improved wound healing abilities via an oxidative stress decrease. However, its impact on wound healing in diabetic models and its underlying mechanisms remain unclear. Determining the vascular endothelial growth factor (VEGF) contents in a human vascular smooth muscle cell (VSMC)-conditioned medium was assessed using human VEGF immunoassay and vascular reactivity using porcine coronary artery rings. Later, C57BL/6 or db/db mice were anesthetized, after which a 6-mm biopsy punch was manipulated for perforation via the back skin. Subsequently, CAPE was applied to the wound and changed daily. Furthermore, the injury in each mouse was digitally photographed, and the wound area was quantified. We observed that CAPE increased VEGF levels in human VSMC-conditioned medium, improved endothelium-dependent nitric oxide (NO)-mediated vasorelaxation, inhibited U46619-induced vasoconstriction porcine coronary artery, and enhanced cutaneous wound healing in the diabetic mouse model. Hence, we propose that CAPE improves wound healing in diabetic mice, which is aided by increased VEGF and NO expression.
CITATION STYLE
Park, S. H., Song, S. Y., Park, E. H., Kim, E., Oh, G. C., Choo, E. H., … Oak, M. H. (2022). Beneficial Effects of Caffeic Acid Phenethyl Ester on Wound Healing in a Diabetic Mouse: Role of VEGF and NO. Applied Sciences (Switzerland), 12(5). https://doi.org/10.3390/app12052320
Mendeley helps you to discover research relevant for your work.