Controlling kinetic and diffusive length-scales during absorptive hydrogen removal in methane dehydroaromatization on MoCx/H-ZSM-5 catalysts

5Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Addition of Zr metal absorbent to MoCx/H-ZSM-5 in the form of staged-bed, stratified-bed, and interpellet physical mixtures effectively scavenges H2 from catalyst proximity, enhancing maximum single-pass benzene + naphthalene yield during methane dehydroaromatization (DHA) reactions to 14–16% compared to 8% in formulations without zirconium. The coupling of spatially-distinct catalytic and absorptive functions is achieved by dispersive/diffusive transport which conveys H2 to staged Zr both co- and counter-current to bulk advection, thereby suppressing axial H2 partial pressure profiles along the catalyst bed and enhancing net aromatization rates. We evince hitherto unreported significance of dispersive hydrogen transport during methane DHA by measurement of Péclet number, Pe = 1.32, in H2 tracer studies with step-change or impulse input to inert catalyst proxies. Kinetic limits to methane pyrolysis are quantified by Damköhler number, Da, for synthesis of benzene, DaB = 0.15, and naphthalene, DaN = 0.03, determined from kinetic studies which rigorously account for reversibility of DHA reactions. Detailed reaction-transport models synthesize interplay of kinetic, diffusive, and convective length-scales captured by Péclet and Damköhler number to predict influence of catalyst-absorbent proximity and process flow-conditions on aromatization rates. Systematic control of catalyst bed-length, L, or linear flow velocity, u, predictably alters Pe and Da to effect improvements in methane conversion with and without Zr metal, corroborating results from simulation of the reaction-transport model.

Cite

CITATION STYLE

APA

Razdan, N. K., Kumar, A., & Bhan, A. (2019). Controlling kinetic and diffusive length-scales during absorptive hydrogen removal in methane dehydroaromatization on MoCx/H-ZSM-5 catalysts. Journal of Catalysis, 372, 370–381. https://doi.org/10.1016/j.jcat.2019.03.016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free