Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology

57Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The central issue in quantum parameter estimation is to find out the optimal measurement setup that leads to the ultimate lower bound of an estimation error. We address here a question of whether a Gaussian measurement scheme can achieve the ultimate bound for phase estimation in single-mode Gaussian metrology that exploits single-mode Gaussian probe states in a Gaussian environment. We identify three types of optimal Gaussian measurement setups yielding the maximal Fisher information depending on displacement, squeezing, and thermalization of the probe state. We show that the homodyne measurement attains the ultimate bound for both displaced thermal probe states and squeezed vacuum probe states, whereas for the other single-mode Gaussian probe states, the optimized Gaussian measurement cannot be the optimal setup, although they are sometimes nearly optimal. We then demonstrate that the measurement on the basis of the product quadrature operators X̂ P̂ + P̂ X̂ , i.e., a non-Gaussian measurement, is required to be fully optimal.

Cite

CITATION STYLE

APA

Oh, C., Lee, C., Rockstuhl, C., Jeong, H., Kim, J., Nha, H., & Lee, S. Y. (2019). Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology. Npj Quantum Information, 5(1). https://doi.org/10.1038/s41534-019-0124-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free