We processed applesauce, tomato juice, and cranberries in pint jars in a boiling water canner to test thermal processing theories against home canning of highacid foods. For each product, thermocouples were placed at various heights in the jar. Values for fh (heating), fc1 (cooling), and F82.2°C (lethality) were determined for each thermocouple location, and did not depend substantially on thermocouple location in accordance with heat transfer theory. There was a cold spot in the jar, but the cold spot during heating became the hot spot during cooling. During heating, the geometric center was the last to heat, and remained coldest the longest, but during coooling, it was also the last to cool, and remained hottest the longest. The net effect was that calculated lethality in home canning was not affected by thermocouple location. Most of the lethality during home canning occurred during air cooling, making cooling of home canned foods of great importance. Calculated lethality was far greater than the required 5-log reduction of spores in tomato juice and vegetative cells in cranberries, suggesting a wide margin of safety for approved home-canning processes for high-acid foods.
CITATION STYLE
Etzel, M. R., Willmore, P., & Ingham, B. H. (2015). Heat penetration and thermocouple location in home canning. Food Science and Nutrition, 3(1), 25–31. https://doi.org/10.1002/fsn3.185
Mendeley helps you to discover research relevant for your work.