For several decades, the electrical resistance spot welding process has been widely used in the manufacturing of sheet metal structures, especially in automotive bodies. During this period there was no significant development for this welding process. However, in recent years, in order to meet the demand for lighter, economical, and low-cost vehicles, the automotive manufacturing industry is undergoing a revolution in the use of high strength steel sheet combinations, chemical compositions, and of di_erent thicknesses. In this context, the present work focuses on the study and development of a new resistant spot welding technology using additive manufacturing (AMSW) in zinc-coated steel sheets, used in the automotive industry. As a comparison, spot welding was also performed by the conventional resistance spot welding process (RSW). The results showed that the spot welding process using additive manufacturing (AMSW), through the optimized parameters, compared to the conventional resistance spot welding process (RSW), was 34.47% higher in relation to the shear tensile stress, as well as 28.57% higher tensile stress with a perpendicular load to the weld spot. The indentation or thermomechanical mark on the surface of the sheet was imperceptible to the visual inspection, producing a smooth face in the spot region.
CITATION STYLE
Batista, M., Furlanetto, V., & Brandi, S. D. (2020). Development of a resistance spot welding process using additive manufacturing. Metals, 10(5). https://doi.org/10.3390/met10050555
Mendeley helps you to discover research relevant for your work.