Characterization of Ligand Binding to GPCRs Through Computational Methods

8Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The recent increase in available G protein-coupled receptor structures now contributes decisively to the structure-based ligand design. In this context, computational approaches in combination with medicinal chemistry and pharmacology are extremely helpful. Here, we provide an update on our structure-based computational protocols, used to answer key questions related to GPCR-ligand binding. All combined, these techniques can shed light on ligand binding modes, determine the molecular basis of conformational selection, for agonists and antagonists, as well as of subtype selectivity. To illustrate each of these questions, we will consider examples from existing projects on three families of class A (rhodopsin-like) GPCRs: one small-molecule (nucleotide-like) family, i.e., the adenosine receptors, and two peptide-binding receptors: neuropeptide-Y and angiotensin II receptors. The successful application of the same computational protocols to investigate this diverse group of receptor families gives an idea of the general applicability of our methodology in the characterization of GPCR-ligand binding.

Cite

CITATION STYLE

APA

Vasile, S., Esguerra, M., Jespers, W., Oliveira, A., Sallander, J., Åqvist, J., & Gutiérrez-de-Terán, H. (2018). Characterization of Ligand Binding to GPCRs Through Computational Methods. In Methods in Molecular Biology (Vol. 1705, pp. 23–44). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7465-8_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free