What Goes Up Must Come Down: Integrating Air and Water Quality Monitoring for Nutrients

12Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Excess nitrogen and phosphorus ("nutrients") loadings continue to affect ecosystem function and human health across the U.S. Our ability to connect atmospheric inputs of nutrients to aquatic end points remains limited due to uncoupled air and water quality monitoring. Where connections exist, the information provides insights about source apportionment, trends, risk to sensitive ecosystems, and efficacy of pollution reduction efforts. We examine several issues driving the need for better integrated monitoring, including: coastal eutrophication, urban hotspots of deposition, a shift from oxidized to reduced nitrogen deposition, and the disappearance of pristine lakes. Successful coordination requires consistent data reporting; collocating deposition and water quality monitoring; improving phosphorus deposition measurements; and filling coverage gaps in urban corridors, agricultural areas, undeveloped watersheds, and coastal zones.

Cite

CITATION STYLE

APA

Amos, H. M., Miniat, C. F., Lynch, J., Compton, J., Templer, P. H., Sprague, L. A., … Pouyat, R. (2018). What Goes Up Must Come Down: Integrating Air and Water Quality Monitoring for Nutrients. Environmental Science and Technology, 52(20), 11441–11448. https://doi.org/10.1021/acs.est.8b03504

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free