Induced Expression of Endogenous CXCR4 in iPSCs by Targeted CpG Demethylation Enhances Cell Migration Toward the Ligand CXCL12

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Poor homing of cells after transplantation is an unresolved common issue in cardiac cell therapies. To enhance stem cell homing, the ligand CXC motif chemokine 12 (CXCL12) and its specific receptor CXC receptor type 4 (CXCR4) have been employed as a system in this study to show that induced expression of the endogenous CXCR4 gene in mouse-induced pluripotent stem cells (iPSCs) improved the cell migration. Loci-specific epigenome editing in the form of CpG demethylation at CXCR4 promoter region of the mouse iPSCs was accomplished with CXCR4b-TAL-Tet1c, chimeric fusion proteins of the catalytic domain of ten-eleven translocation 1 (TET1) to the C-terminal end of the DNA binding domains of predesigned synthetic transcription activator-like effectors (TALEs) that recognize specific DNA sequences within the mouse CXCR4 promoter region. Infection of the mouse iPSCs with the engineered CXCR4b-TAL-Tet1c in the form of lentiviral particles induced the loci-specific CpG demethylation and subsequent activation of CXCR4 expression in mouse iPSCs. As expected, the CXCR4-overexpressing iPSCs exhibited 3.9-fold greater migration than the control iPSCs did without alteration of the stemness and activated phosphorylation of AKT significantly. These results set a sound foundation for subsequent in vivo iPSCs transplantation studies in rodent models of acute myocardial infarction and heart failure. We show that TALEs can enhance the expression of CXCR4 by CpG methylation, and may retain the stemness. Migration of iPSCs activated by CXCL12 is associated with significant phosphorylation of AKT, not ERK1/2.

Cite

CITATION STYLE

APA

Jiang, C., Guo, J., Cheng, H., & Feng, Y. H. (2019). Induced Expression of Endogenous CXCR4 in iPSCs by Targeted CpG Demethylation Enhances Cell Migration Toward the Ligand CXCL12. Inflammation, 42(1), 20–34. https://doi.org/10.1007/s10753-018-0869-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free