Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami

60Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

We show a remarkable fact about folding paper: from a single rectangular sheet of paper, one can fold it into a flat origami that takes the (scaled) shape of any connected polygonal region, even if it has holes. This resolves a long-standing open problem in origami design. Our proof is constructive, utilizing tools of computational geometry, resulting in efficient algorithms for achieving the target silhouette. We show further that if the paper has a different color on each side, we can form any connected polygonal pattern of two colors. Our results apply also to polyhedral surfaces, showing that any polyhedron can be "wrapped" by folding a strip of paper around it. We give three methods for solving these problems: the first uses a thin strip whose area is arbitrarily close to optimal; the second allows wider strips to be used; and the third varies the strip width to optimize the number or length of visible "seams" subject to some restrictions. © 2000 Elsevier Science B.V. All rights reserved.

Cite

CITATION STYLE

APA

Demaine, E. D., Demaine, M. L., & Mitchell, J. S. B. (2000). Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami. Computational Geometry: Theory and Applications, 16(1), 3–21. https://doi.org/10.1016/S0925-7721(99)00056-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free