Influence of granular activated carbon on anaerobic co-digestion of sugar beet pulp and distillers grains with solubles

22Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Anaerobic digestion is an important technology to receive energy from various types of biomass. In this work, the impact of granular activated carbon (GAC) on the mesophilic anaerobic co-digestion of sugar beet pulp and distillers grains was investigated. After a short period, anaerobic reactors began to produce biomethane and were ready for completion within 19–24 days. The addition of GAC to reactors (5–10 g L−1) significantly enhanced the methane production rate and consumption of produced volatile fatty acids. Thus, the maximum methane production rate increased by 13.7% in the presence of GAC (5 g L−1). Bacterial and archaeal community structure and dynamics were investigated, based on 16S rRNA genes analysis. The abundant classes of bacteria in GAC-free and GAC-containing reactors were Clostridia, Bacteroidia, Actinobacteria, and Synergistia. Methanogenic communities were mainly represented by the genera Methanosarcina, Methanoculleus, Methanothrix, and Methanomassiliicoccus in GAC-free and GAC-containing reactors. Our results indicate that the addition of granular activated carbon at appropriate dosages has a positive effect on anaerobic co-digestion of by-products of the processing of sugar beet and ethanol distillation process.

Cite

CITATION STYLE

APA

Ziganshina, E. E., Belostotskiy, D. E., Bulynina, S. S., & Ziganshin, A. M. (2020). Influence of granular activated carbon on anaerobic co-digestion of sugar beet pulp and distillers grains with solubles. Processes, 8(10), 1–16. https://doi.org/10.3390/pr8101226

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free