The research paper proposes a novel denoising method to improve the outcome of heart-sound (HS)-based heart-condition identification by applying the dual-tree complex wavelet transform (DTCWT) together with the adaptive neuro-fuzzy inference System (ANFIS) classifier. The method consists of three steps: first, preprocessing to eliminate 50 Hz noise; second, applying four successive levels of DTCWT to denoise and reconstruct the time-domain HS signal; third, to evaluate ANFIS on a total of 2735 HS recordings from an international dataset (PhysioNet Challenge 2016). The results show that the signal-to-noise ratio (SNR) with DTCWT was significantly improved (p < 0.001) as compared to original HS recordings. Quantitatively, there was an 11% to many decibel (dB)-fold increase in SNR after DTCWT, representing a significant improvement in denoising HS. In addition, the ANFIS, using six time-domain features, resulted in 55–86% precision, 51–98% recall, 53–86% f-score, and 54–86% MAcc compared to other attempts on the same dataset. Therefore, DTCWT is a successful technique in removing noise from biosignals such as HS recordings. The adaptive property of ANFIS exhibited capability in classifying HS recordings.
CITATION STYLE
Al-Naami, B., Fraihat, H., Al-Nabulsi, J., Gharaibeh, N. Y., Visconti, P., & Al-Hinnawi, A. R. (2022). Assessment of Dual-Tree Complex Wavelet Transform to Improve SNR in Collaboration with Neuro-Fuzzy System for Heart-Sound Identification. Electronics (Switzerland), 11(6). https://doi.org/10.3390/electronics11060938
Mendeley helps you to discover research relevant for your work.