Salidroside is a major phenylethanoid glycoside in Rhodiola rosea L., a traditional Chinese medicine, with multiple biological activities. It has been shown that salidroside possesses protective effects for alleviating diabetic renal dysfunction, contrast-induced-nephropathy and other kidney diseases. However, the involved molecular mechanism was still not understood well. Herein, we examined the protective effects of salidroside in mice with Adriamycin (ADR)-induced nephropathy and the underlying molecular mechanism. The results showed that salidroside treatment ameliorates proteinuria; improves expressions of nephrin and podocin; and reduces kidney fibrosis and glomerulosclerosis induced by ADR. Mechanistically, ADR induces a robust accumulation of β-catenin in the nucleus and stimulates its downstream target gene expression. The application of salidroside largely abolishes the nuclear translocation of β-catenin and thus inhibits its activity. Furthermore, the activation of β-catenin almost completely counteracts the protective roles of salidroside in ADR-injured podocytes. Taken together, our data indicate that salidroside ameliorates proteinuria, renal fibrosis and podocyte injury in ADR nephropathy, which may rely on inhibition of β-catenin signalling pathway.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Huang, X., Xue, H., Ma, J., Zhang, Y., Zhang, J., Liu, Y., … Sun, C. (2019). Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. Journal of Cellular and Molecular Medicine, 23(6), 4443–4453. https://doi.org/10.1111/jcmm.14340