The nutrition enhancement of turmeric using lactic acid bacteria (LAB) was studied. Among the 23 different LAB strains, Levilactobacillus brevis BCRC12247 was chosen due to its robustness. The fermentation of a turmeric drink from L. brevis significantly improved DPPH antioxidant activity (from 71.57% to 75.87%) and total reducing capacity (2.94 ± 0.03 mM Trolox/g dw) compared to the unfermented product. The fermented turmeric samples were subjected to liquid–liquid partition, producing four different fractions. An in vitro study was conducted by treating the fractions on human fibroblast cells (Hs68). The results indicated that hexane (Hex) and water residual (WA) samples could significantly attenuate UVA (15 J/cm2)-induced reactive oxygen species (ROS), reducing the oxidative damage from 16.99 ± 3.86 to 3.42 ± 2.53 and 3.72 ± 1.76 times, respectively. Real-time polymerase chain reaction (qPCR) results showed that Hex and WA inhibited the expression of c-jun and c-fos and lowered the mmp-1 value compared to the negative control group (by 2.72 and 2.58 times, respectively). Moreover, the expressions of Nrf2 and downstream antioxidant-related genes were significantly elevated in the Hex fraction. Therefore, fermentation using L. brevis can be an effective method to elevate the nutritional values of turmeric, protecting fibroblast cells from UVA-induced photoaging and oxidative stress.
CITATION STYLE
Lu, J. J., Cheng, M. C., Khumsupan, D., Hsieh, C. C., Hsieh, C. W., & Cheng, K. C. (2023). Evaluation of Fermented Turmeric Milk by Lactic Acid Bacteria to Prevent UV-Induced Oxidative Stress in Human Fibroblast Cells. Fermentation, 9(3). https://doi.org/10.3390/fermentation9030230
Mendeley helps you to discover research relevant for your work.