Telomerase deficiency reflects age-associated changes in CD4+ T cells

22Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Amongst other systemic changes, aging leads to an immune dysfunction. On the molecular level, a hallmark of aging is telomere shortening. The functional relevance of telomerase, an enzyme capable of elongating telomeres in T cells upon antigen stimulation, is not fully understood. Studying the impact of telomere shortening on CD4+ T cells and especially Th1 effector function can provide a better understanding on immune dysfunctions in elderly. Results: We investigated T cell numbers and differentiation in telomerase-deficient (mTerc−/−) mice under steady-state conditions and the functional role of telomerase in CD4+ T cells using in vitro stimulation and Th1 polarization protocols by comparing T cells from mTerc−/− and control mice. We report reduced relative CD4+ T cell numbers in blood and secondary lymphoid organs and a relative decline in the naïve T cell population in thymus, blood and spleen of mTerc−/− mice compared to control mice. Importantly, after in vitro polarization, mTerc−/− G3 CD4+ T cells showed higher numbers of IFNγ-producing cells and reduced expression of CD28. Notably, telomerase-deficient T cells were more susceptible to inhibition of Th1 polarization by IL-6 in vitro. These results demonstrate that telomerase deficiency recapitulates several changes of CD4+ T cells seen in aged humans regarding the naïve T cell population, expression of CD28 and cytokine production. Conclusion: Our data suggest that telomere shortening could play a key role in the aging of T cell immunity, with clinical implications for immune diseases and tumor development and that mTerc−/− mice are a suitable model to study aging-related defects of adaptive immunity.

Cite

CITATION STYLE

APA

Matthe, D. M., Thoma, O. M., Sperka, T., Neurath, M. F., & Waldner, M. J. (2022). Telomerase deficiency reflects age-associated changes in CD4+ T cells. Immunity and Ageing, 19(1). https://doi.org/10.1186/s12979-022-00273-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free