A Reproducibility Study of Deep and Surface Machine Learning Methods for Human-related Trajectory Prediction

11Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we compare several deep and surface state-of-the-art machine learning methods for risk prediction in problems that can be modelled as a trajectory of events separated by irregular time intervals. Trajectories are the abstract representation of many real-life data, such as patient records, student e-tivities, online financial transactions, and many others. Given the continuously increasing number of machine learning methods to predict future high-risk events in these contexts, we aim to provide more insight into reproducibility and applicability of these methods when changing datasets, parameters, and evaluation measures. As an additional contribution, we release to the community the implementations of all compared methods.

Cite

CITATION STYLE

APA

Prenkaj, B., Velardi, P., Distante, D., & Faralli, S. (2020). A Reproducibility Study of Deep and Surface Machine Learning Methods for Human-related Trajectory Prediction. In International Conference on Information and Knowledge Management, Proceedings (pp. 2169–2172). Association for Computing Machinery. https://doi.org/10.1145/3340531.3412088

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free