The hippocampal formation plays key roles in representing an animal's location and in detecting environmental novelty to create or update those representations. However, the mechanisms behind this latter function are unclear. Here, we show that environmental novelty causes the spatial firing patterns of grid cells to expand in scale and reduce in regularity, reverting to their familiar scale as the environment becomes familiar. Simultaneously recorded place cell firing fields remapped and showed a smaller, temporary expansion. Grid expansion provides a potential mechanism for novelty signaling and may enhance the formation of new hippocampal representations, whereas the subsequent slow reduction in scale provides a potential familiarity signal.
CITATION STYLE
Barry, C., Ginzberg, L. L., O’Keefe, J., & Burgess, N. (2012). Grid cell firing patterns signal environmental novelty by expansion. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17687–17692. https://doi.org/10.1073/pnas.1209918109
Mendeley helps you to discover research relevant for your work.