Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis

136Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Plants endure challenging environments in which they are constantly threatened by diverse pathogens. The soil-borne fungus Verticillium dahliae is a devastating pathogen affecting many plant species including cotton, in which it significantly reduces crop yield and fiber quality. Melatonin involvement in plant immunity to pathogens has been reported, but the mechanisms of melatonin-induced plant resistance are unclear. In this study, the role of melatonin in enhancing cotton resistance to V. dahliae was investigated. At the transcriptome level, exogenous melatonin increased the expression of genes in phenylpropanoid, mevalonate (MVA), and gossypol pathways after V. dahliae inoculation. As a result, lignin and gossypol, the products of these metabolic pathways, significantly increased. Silencing the serotonin N-acetyltransferase 1 (GhSNAT1) and caffeic acid O-methyltransferase (GhCOMT) melatonin biosynthesis genes compromised cotton resistance, with reduced lignin and gossypol levels after V. dahliae inoculation. Exogenous melatonin pre-treatment prior to V. dahliae inoculation restored the level of cotton resistance reduced by the above gene silencing effects. Melatonin levels were higher in resistant cotton cultivars than in susceptible cultivars after V. dahliae inoculation. The findings indicate that melatonin affects lignin and gossypol synthesis genes in phenylpropanoid, MVA, and gossypol pathways, thereby enhancing cotton resistance to V. dahliae.

Cite

CITATION STYLE

APA

Li, C., He, Q., Zhang, F., Yu, J., Li, C., Zhao, T., … Chen, J. (2019). Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. Plant Journal, 100(4), 784–800. https://doi.org/10.1111/tpj.14477

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free