Globally, many mines emit acid mine drainage (AMD) during and after their operational life cycle. AMD can affect large and often inaccessible areas. This leads to expensive monitoring via conventional ground-based sampling. Recent advances in remote sensing which are both non-intrusive and less time-consuming hold the potential to unlock a new paradigm of automated AMD analysis. Herein, we test the feasibility of remote sensing as a standalone tool to map AMD at various spatial resolutions and altitudes in water-impacted mining environments. This was achieved through the same-day collection of satellite-based simulated Sentinel-2 (S2) and PlanetScope (PS2.SD) imagery and drone-based UAV Nano-Hyperspec (UAV) imagery, in tandem with ground-based visible and short-wave infrared analysis. The study site was a historic tin and copper mine in Cornwall, UK. The ground-based data collection took place on the 30 July 2020. Ferric (Fe(III) iron) band ratio (665/560 nm wavelength) was used as an AMD proxy to map AMD pixel distribution. The relationship between remote-sensed Fe(III) iron reflectance values and ground-based Fe(III) iron reflectance values deteriorated as sensor spatial resolution decreased from high-resolution UAV imagery (<50 mm2 per pixel; r2 = 0.78) to medium-resolution PlanetScope Dove-R (3 m2 per pixel; r2 = 0.51) and low-resolution simulated Sentinel-2 (10 m2 per pixel; r2 = 0.23). A fractioned water pixel (FWP) analysis was used to identify mixed pixels between land and the nearby waterbody, which lowered spectral reflectance. Increases in total mixed pixels were observed as the spatial resolution of sensors decreased (UAV: 2.4%, PS: 3.7%, S2: 8.5%). This study demonstrates that remote sensing is a non-intrusive AMD surveying tool with varying degrees of effectiveness relative to sensor spatial resolution. This was achieved by identifying and successfully mapping a cross-sensor Fe(III) iron band ratio whilst recognizing water bodies as reflectance inhibitors for passive sensors.
CITATION STYLE
Chalkley, R., Crane, R. A., Eyre, M., Hicks, K., Jackson, K. M., & Hudson-Edwards, K. A. (2023). A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sensing, 15(1). https://doi.org/10.3390/rs15010076
Mendeley helps you to discover research relevant for your work.