Properties of voltage-gated Ca2+ currents measured from mouse pancreatic β-cells in situ

7Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

We used the single-microelectrode voltage-clamp technique to record ionic currents from pancreatic β-cells within intact mouse islets of Langerhans at 37C, the typical preparation for studies of glucose-induced "bursting" electrical activity. Cells were impaled with intracellular microelectrodes, and voltage pulses were applied in the presence of tetraethylammonium. Under these conditions, a voltage-dependent Ca2+ current (ICav), containing L-type and non-L-type components, was observed. The current measured in situ was larger than that measured in single cells with whole-cell patch clamping, particularly at membrane potentials corresponding to the action potentials of β-cell electrical activity. The temperature dependence of ICav was not sufficient to account for the difference in size of the currents recorded with the two methods. During prolonged pulses, the voltage-dependent Ca2+ current measured in situ displayed both rapid and slow components of inactivation. The rapid component was Ca2+-dependent and was inhibited by the membrane-permeable Ca2+ chelator, BAPTA-AM. The effect of BAPTA-AM on β-cell electrical activity then demonstrated that Ca2+-dependent inactivation of ICav contributes to action potential repolarization and to control of burst frequency. Our results demonstrate the utility of voltage clamping β-cells in situ for determining the roles of ion channels in electrical activity and insulin secretion. © 2006 Sociedad de Biología de Chile.

Cite

CITATION STYLE

APA

Mears, D., & Rojas, E. (2006). Properties of voltage-gated Ca2+ currents measured from mouse pancreatic β-cells in situ. Biological Research, 39(3), 505–520. https://doi.org/10.4067/S0716-97602006000300012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free