Performance analysis and enhancement of the DSRC for VANET's safety applications

266Citations
Citations of this article
135Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An analytical model for the reliability of a dedicated short-range communication (DSRC) control channel (CCH) to handle safety applications in vehicular ad hoc networks (VANETs) is proposed. Specifically, the model enables the determination of the probability of receiving status and safety messages from all vehicles within a transmitter's range and vehicles up to a certain distance, respectively. The proposed model is built based on a new mobility model that takes into account the vehicle's follow-on safety rule to derive accurately the relationship between the average vehicle speed and density. Moreover, the model takes into consideration 1) the impact of mobility on the density of vehicles around the transmitter, 2) the impact of the transmitter's and receiver's speeds on the system reliability, 3) the impact of channel fading by modeling the communication range as a random variable, and 4) the hidden terminal problem and transmission collisions from neighboring vehicles. It is shown that the current specifications of the DSRC may lead to severe performance degradation in dense and high-mobility conditions. Therefore, an adaptive algorithm is introduced to increase system reliability in terms of the probability of successful reception of the packet and the delay of emergency messages in a harsh vehicular environment. The proposed model and the enhancement algorithm are validated by simulation using realistic vehicular traces. © 2013 IEEE.

Cite

CITATION STYLE

APA

Hafeez, K. A., Zhao, L., Ma, B., & Mark, J. W. (2013). Performance analysis and enhancement of the DSRC for VANET’s safety applications. IEEE Transactions on Vehicular Technology, 62(7), 3069–3083. https://doi.org/10.1109/TVT.2013.2251374

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free