Grouped sparse representation classification methods (GSRCMs) have been attracted much attention by scholars, especially in face recognition. However, pervious literatures of GSRCMs only fuse the scores from different groups to classification the test sample, not consider relationships of the groups. Moreover, in real-world application, many methods of face recognition cannot obtain satisfied recognition accuracies because of the variation of poses, illuminations and facial representations of face image. In order to overcome above-mentioned bottlenecks, in this paper, we proposed a novel grouped fusion-based method in face recognition. The proposed method uses the axis-symmetrical property of face to designs a framework and perform it on original training set to generate a kind of virtual samples. The virtual samples are able to reflect the possible change of face images. Meanwhile, to consider the relationship of different groups and strengthen the representation capability of test sample, the proposed method exploits a novel weighted fusion approach to classify the test sample. Experimental results on five face databases demonstrate that our method is reasonable and can obtain higher recognition rate than the other 11 state-of-the-art methods.
CITATION STYLE
Ke, J., Peng, Y., Liu, S., Sun, Z., & Wang, X. (2019). A novel grouped sparse representation for face recognition. Multimedia Tools and Applications, 78(6), 7667–7689. https://doi.org/10.1007/s11042-018-6277-x
Mendeley helps you to discover research relevant for your work.